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Abstract 
 
Tool wear regulation highly influences product quality and the safety and productivity of machining processes. Hence, it is one of the 

most important elements in the supervisory control of machine tools. The development of this type of machine tool adaptive control is 
practically at its infancy because there are still no industrial solutions concerning robust, reliable, and highly precise continuous tool wear 
estimators. Therefore, this paper primarily aims at the determination of a tool wear regulation model that can ensure the maximum al-
lowed amount of tool wear rate within a predefined machining time, while simultaneously maintaining a high level of process productiv-
ity. The proposed model is structured using Radial Basis Function Neural Network controller and Modified Dynamical Neural Network 
filter. It is analysed using an analytical tool wear model with experimentally adjusted parameters. 
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1. Introduction 

In order to achieve higher levels of machining process auto-
mation, different types of control strategies and techniques 
have to be developed and integrated into the machine tool 
control system. Major research efforts have been focused on 
the development of different force control models because of 
their high influence on productivity. In addition, problems 
concerning chatter suppression, elimination of burr formation, 
and achievement of chip discontinuous forms, among others, 
have also been considered. However, a less work has been 
done in the field of tool wear regulation (TWR). In their state-
of-the-art paper on machining process monitoring and control, 
Liang et al. [1] acknowledged this problem. However, they 
did not offer possible solutions thereto. The development of 
tool wear control models is practically at its infancy because 
there are still no industrial solutions for robust, reliable, and 
highly precise on-line tool wear estimators, despite extensive 
research efforts in the past years. Koren [2] emphasised that 
the absence of industrially acceptable on-line direct tool wear 
measurement systems and the disadvantages of indirect meas-
urement techniques represent the primary obstacles in devel-
oping commercially adaptive control systems with optimisa-
tion for milling, turning, and drilling. 

According to Liang et al. [1] and Landers et al. [3], the pur-

pose of tool wear regulation system is to adjust process pa-
rameters so that the tool life can either be maximised in a job 
shop production environment or be attuned to a scheduled tool 
change period in a mass production environment. Another 
issue is related to tool breakage avoidance in situations of 
highly intensive unexpected wear when there is a need and a 
possibility to finish a machining operation or to provide a safe 
tool exit. 

In this paper, a tool wear regulation model, based on two 
types of static and dynamic neural networks, is presented. At 
times, the estimation of tool wear parameters can be highly 
imprecise; hence, estimated values have to be filtrated in order 
to reduce the negative influence of estimation errors on the 
overall control process. A filter, structured in the form of a 
recurrent neural network, is therefore proposed. For the activa-
tion function, the Radial Basis Function is chosen. Moreover, 
neural network parameters are adjusted using a variant of the 
Resilient Back–Propagation learning algorithm (RPROP). The 
control algorithm is realised using the Radial Basis Function 
Neural Network (RBFNN) because of its good approximation 
capabilities and the possibility of a relatively simple and fast 
structural configuration. 

With experimentally defined parameters, adaptation of the 
controller and filter structure, as well as analyses of their char-
acteristics in this type of machining process control, is con-
ducted using the Koren-Lenz analytical flank wear model. 
This model is chosen because flank wear width (VB) is the 
most dominant tool wear parameter. Additionally, machining 
process disturbances and tool wear estimator errors are also 
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added to the simulated TWR model (Fig. 1). 
 

2. TWR objectives 

Following the aforementioned reasons for TWR implemen-
tation, the primary control objective of the proposed TWR 
model is focused on constraining the amount of tool wear 
parameter, – the flank wear width (VB), – to some defined 
maximal value (VBMAX) within a predefined machining time 
(TM) which represents the tool life. This condition is addition-
ally expanded with the high process productivity criterion 
quantified by the material removal rate (MRR) – the volume of 
the workpiece material removed in the time unit. 

 
      .MAX MVB VB for T T and MRR max= = →   (1) 

 
Therefore, enhancing the cutting tool efficiency inside tool 

changing cycles is possible. Although productivity maximisa-
tion criterion has no real significance in the case of sudden 
critical wear rate, the fulfilment of the first constraint set on 
the tool wear parameter and the machining time could prevent 
tool breakage.  

The material removal rate is defined as 
 

   1000   c pMRR v f z a= ,  (2) 
 
where vc is the cutting speed (m/min), f is the feed (mm/tooth), 
z is the number of teeth, and a is the depth of the cut (mm); 
hence, MRR can obviously be changed by all three cutting 
parameters. However, from the technological perspective, feed 
and cutting speed are the most appropriate in–process adapta-
tion parameters. The relationships between MRR and feed and 
between MRR and cutting speed are proportional and equiva-
lent. On the other hand, cutting speed has a higher influence 
on tool wear intensity than feed [4, 5]. Considering all these 
facts and in order to fulfil the criteria defined by Eq. (1), the 

cutting speed has to be maximised and used as the only adap-
tation parameter, while the feed has to be kept on its maximal 
possible value, which is constrained by the surface quality 
parameter and/or other technological conditions. Thus, cutting 
speed is used as a control variable, and the remaining cutting 
parameters are taken as the additional input parameters of the 
control algorithm. 

In ideal situations, with no disturbances, the maximal pro-
ductivity of the machining process can be accomplished by 
the cutting speed, which can provide direct transition from 
some initial or actual tool wear state to a new and desired one, 
which is within the defined machining time. The proof of this 
hypothesis is given in the Appendix. It is based on findings 
concerning the optimal cutting speed for MRR maximisation 
in tool wear regulation, using Taylor's tool life equation. In 
real conditions, the optimal cutting speed is impracticable 
because of permanent, unavoidable, and often very influential 
process disturbances that greatly influence the estimation er-
rors of tool wear parameters. Additionally, the discrepancy 
between the maximum and achieved MRR also depends on the 
characteristics of chosen filtration and control algorithms be-
cause their parameters are adapted only on the basis of aver-
age tool wear dynamics, which has to be determined experi-
mentally for every combination of cutting conditions. Never-
theless, despite these limitations caused by complex tool wear 
dynamics, the aforementioned approach for cutting speed 
adaptation is generally applicable in ensuring high productiv-
ity in tool wear regulation processes. 
 

3. Koren-lenz tool wear model 

In real situations, the average values of flank wear parame-
ters are supposedly defined on the basis of measurements 
conducted for the purpose of tool wear estimator structuring. 
In this work, an experimentally defined analytical tool wear 
model is used. However, it only serves as a generator of the 
required average values of the flank wear parameters for dif-
ferent combinations of cutting parameters (Fig. 2) and in ana-
lysing the proposed TWR model. 

 
3.1 Model structure 

The utilised tool wear model was proposed by Koren and 

 
Fig. 1. Tool wear regulation model in real (a) and simulated (b) form.
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Fig. 2. Flank wear curves (for vc = 100; 110; 120 … 300 m/min). 
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Lenz [6], which is based on two dominant wear mechanisms, 
namely, abrasion and diffusion. Later, it has been combined 
with the crater wear model and is described in detail by Danai 
and Ulsoy [7]. Unlike the extended form, in this research, we 
concentrated on the flank wear control problem; thus, only a 
flank wear model is used, as in the work of Ulsoy et al. [8]. 
The total value of the flank wear parameter is defined as the 
sum of its abrasive (VBA) and diffusion (VBD) components. 

 
A DVB VB VB= + .  (3) 

 
The relationships representing these two components are: 
 

.
0

1
1cosA A r

c p

l VB VB K F
v fa

γ+ = , and  (4) 

3. (273 )
2

f

K

D cVB K v e θ
−

+= ,  (5) 
 
where l0, is a constant, vc is the cutting speed, γr is the effective 
rake angle, and f and ap are the feed and depth of the cut, re-
spectively. Cutting force is defined as 

 
7

9 10 11 12 13[ (1- ) - - ]n
r c p pF K f K K K v a K a VBγ= + ,  (6) 

 
and the tool-work temperature on the flank side of the tool is 
defined as 
 

31 2
6 7

nn n
f cK v f K VBθ = + .  (7) 

 
The other parameters are constants, which are determined in 

experimental measurements [9]. In the model, the following 
intervals of cutting parameters are defined: ap = 2 - 4 mm, vc = 
100 - 300 m/min, and f= 0.15 - 0.35 mm/rev. 
 
3.2 Simulation of disturbances 

As expected, there will always be some discrepancies be-
tween the average and actual tool wear intensity in the real 
industrial environment; hence, the so-called impulse and esti-
mation error disturbances are additionally added to the simu-
lated tool wear model outputs.  

Impulse disturbances are related to the appearance of the 
sudden augmentation of wear intensity (i.e., unexpected in-
stant damages of cutting edge). They are still not classified as 
tool breakage. They are chosen as the most intensive forms of 
tool wear processes. Their implementation is realised through 
the increment (δVBI), which is defined as a product of the 
Koren-Lenz output value VBM and δ I factor in every ith simu-
lation step. 
 

0 , '
, 0 , '

0 , '

I M I I
i i i i

i i
VB VB i i

i i
δ δ δ

<⎧ ⎫
⎪ ⎪= = > =⎨ ⎬
⎪ ⎪>⎩ ⎭

.  (8) 

 
Estimation error disturbances are a result of unavoidable 

and often very influential inaccuracies in the estimation of the 

flank wear parameter. This type of noise (δVBE) is imple-
mented using white noise in the intervals of ± 0.05 mm and 
± 0.1 mm 

 
[ ]min max, ,E

i i iVB e e e eδ = ∈ .  (9) 
 

Process disturbances are implemented in the tool wear 
model as 

 

( ){ }1, , ,M M
i c p z ii

VB f v a f VB −= ,  (10) 

M M I
i i iVB VB VBδ= + .  (11) 

 
The final simulated value of the ‘estimated’ flank wear pa-

rameter is obtained from 
 

ME E
i i iVB VB VBδ= + .  (12) 

 
4. Modified dynamic neural network 

Reducing the highly negative influences of estimation error 
on the quality of control processes is a necessary precondition 
in any successful tool wear regulation. With its data process-
ing and filtering capabilities, the Modified Dynamic Neural 
Network (MDNN) is proposed as an estimated flank wear 
parameter filter. It is a variant of the dynamic neural network, 
named Dynamic Multilayer Perceptron Network (DMLP), 
which was presented by Ayoubi et al. [10]. This type of net-
work is characterised by a dynamic neuron model, the so-
called Dynamic Elementary Processor (DEP), which is struc-
tured as an Auto Regressive Moving Average (ARMA) filter 
and is built into the network hidden layer. This way, every 
hidden layer neuron process previous values of its own activ-
ity together with its new input signals. In contrast to the 
DMLP network, Gauss activation functions are used in the 
MDNN network, and the structure is simplified by omitting 
the output layer activation function. 
 
4.1 MDNN algorithm 

The input value of the kth hidden layer neuron in the ith step 
is calculated from the sum of the products of all l network 
input vector elements (x) and their weight factors (v). 

 

, ,
1

, 1,..., , 1,...,
L

k i kl l i
l

net v x k K i I
=

= = =∑   (13) 

 
The obtained sum is then processed in DEP unit (i.e., 

ARMA filter), which can be written in the form of an impulse 
transfer function: 

 

( ) ( )
( )

( )
( )

1 2
0 1 2

1 2
1 21

k k k k k
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,  (14) 
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that is, in the form of a difference equation  
 

, 0 , 1 , 1 2 , 2

1 , 1 2 , 2

k i k k i k k i k k i

k k i k k i

y b net b net b net
a y a y

− −

− −

= + + −

− −
,  (15) 

 
where a and b are the filter coefficients, and ,k iy  is the filter 
output. 

The output of the kth hidden layer neuron (DEP unit) is 
 

2
,1

2
,

k i k

k

y t

k iy e σ
−⎛ ⎞
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⎝ ⎠= ,  (16) 

 
where tk is the centre and σk is the width of the activation func-
tion. In the end, by summing the outputs of all hidden layer 
neurons and belonging weight factors (w), the final mth net-
work output value is defined as 
 

, ,
1

, 1,...,
K

m i k i mk
k

O y w m M
=

= =∑ .  (17) 

 
4.2 RPROP learning algorithm 

Network parameters (v, w, b0, b1, b2, a1, a2, t, σ) are adapted 
using the fast variant of the Resilient Back-Propagation learn-
ing method, the so-called RPROP with New Weight-
Backtracking Scheme [11-13], which demonstrates fast error 
convergence and good generalization characteristics. Modifi-
cation of the network learning parameter (lp) for every new 
learning step depends on parameter ∆, which has to be 
adapted in every nth learning step according to the following 
expression: 

 

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 max 1

1 min 1

1 1

min , , 0

max , , 0

, 0

n n n

n n n n

n n n

E lp E lp

E lp E lp

E lp E lp

η

η

+
− −

−
− −

− −

⎧ ⎫⋅∆ ∆ ∇ ⋅∇ >
⎪ ⎪
⎪ ⎪∆ = ⋅∆ ∆ ∇ ⋅∇ <⎨ ⎬
⎪ ⎪

∆ ∇ ⋅∇ =⎪ ⎪
⎩ ⎭

, (18) 

 
where 0<η−<1<η+ . Increasing (η+) and decreasing (η− ) pa-
rameters are generally empirically defined. In this study, 
η+=1.2 and η− = 0.5 have been chosen according to the rec-
ommendations and conclusions of Riedmiller [12]. The new 
value of the learning parameter is 

 
1n n nlp lp lp+ = + ∆ ,  (19) 

 
where 

( )
( ) ( )1

,

0
n n n

n n

lp sign E lp

for E lp E lp−

∆ = − ∇ ⋅∆

∇ ⋅∇ ≥

[ ]
  (20) 

and 

( ) ( )
1

1 1

,
0

n n

n n n n

lp lp
for E lp E lp and E E

−

− −

∆ = −∆

∇ ⋅∇ < >
.  (21) 

Parameter E is the sum of the squared errors of all MDNN 
network outputs (M) 
 

( )2
, ,

1 1

1
2

M I

m i m i
m i

E d O
= =

= −∑∑ , (22) 

 
where dm,i is the desired value of the mth output for the ith 
learning sample. If the sign of the partial derivative in two 
sequential steps is changed (∇En-1 (lp)⋅∇En (lp) < 0), the gradi-
ent of error function with respect to the learning parameter (lp) 
is set to zero (∇En (lp) = 0), thus reducing the amount of lp in 
the next step. If, at the same time, the second condition from 
Eq. (21) is fulfilled (i.e., En > En-1), then lpn+1 = lpn-1. On the 
other hand, when En ≤ En-1, the amount of learning parameter 
in the actual step does not change (lpn+1 = lpn). 

At the beginning of the learning process, the initial ∆ values 
of all learning parameters are set to some arbitrary chosen 
small value, which is proportional to the initial values of the 
learning parameters (in this work ∆ = 10–2). The upper limit is 
∆max = 50, and the lower limit is ∆min = 10–6 as suggested by 
Riedmiller and Braun [11]. MDNN network parameters are 
adapted using a batch learning procedure. The partial deriva-
tives of error are calculated for every sample, and their sum in 
the nth learning step is used for network parameters adaptation. 
The initial values of partial derivatives are set to zero at the 
beginning of every new learning step. The partial derivative of 
error with respect to the weights of the network output layer is 
obtained from 

 

( ),
, , ,

m i m m
m i m i k i

mk m mk i

E E O d O y
w O w

∂ ⎛ ⎞∂ ∂
= = − −⎜ ⎟
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.  (23) 

 
Their sum in the nth step for weight wmk, which connects the 

kth hidden layer neuron and the mth output layer neuron, is 
 

( ) ,

1

I
m i

n mk
mki

E
E w

w
=

∂
∇ =

∂∑ .  (24) 

 
The partial derivatives of learning errors with respect to 

DEP unit parameters for the kth hidden layer neuron and their 
sums are obtained from 
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In the parameters of the Gauss activation function, the sum 

of their learning error gradients is defined from the following 
expressions: 
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In the end, the sum of partial derivatives with respect to 

network input layer weight factors is quantified as follows: 
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The learning procedure is conducted using noisy data (

E
VB ) 

as network inputs and simulated ‘average’ flank wear values 
as outputs (VBM). Every set of training data is related to the 
belonging combination of cutting parameters. Sixteen network 
structures with arbitrarily chosen input neurons (3, 5, 7, and 9) 
and hidden layer neurons (2, 3, 5 and 10) are analysed using 
tests with different types of disturbances and combinations of 

cutting parameters. All structures are configured in 10, 000 
learning steps, although learning errors practically reach their 
minimum after 3, 000 steps. The best performance is achieved 
with the 5-5-1 network structure, that is, the filtered tool wear 
parameter in the ith step ( iVB ) is determined on the basis of 
estimated values from the previous four steps ( 4

E
iVB − , 3

E
iVB − , 

2
E
iVB − , 1

E
iVB − ) and the ith step (

E
iVB ). The absence of fil-

tration in the first four steps does not have any relevant influ-
ence on the overall control process. The chosen MDNN filter 
structure has a filtration error of ∆VB < 0.02 mm in 88-97% of 
the samples, depending on the test types. Higher filtration 
errors are manifested in tests with higher estimation errors and 
impulse disturbances (Fig. 3). 
 

5. RBFNN controller 

In order to fulfil defined control objectives, a controller with 
good approximation characteristics of multidimensional input 
space to the scalar output is required. For this purpose, a well-
known RBF neural network is chosen because of its universal 
functional approximation and good generalization capabilities. 
 
5.1 Control algorithm 

The control variable is obtained from the product of matrix 
H, which is defined by the outputs of hidden layer neurons 
and the weight vector c, 

 
cv = Hc .  (38) 

 
The elements of matrix H are determined from 
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− −

= = =

x t

  (39) 

 
where xi is the input vector composed from the ith element of 
all input neurons, tj is the vector of the jth hidden layer neuron 
position centre and σ is the width of the Gauss (radial basis) 
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Fig. 3. MDNN filter outputs achieved with a 5-5-1 network structure.
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activation function 
 

1 2=j j jd dσ ,  (40) 

 
where d1j is the Euclidean distance between the jth and (j-1)th 
neuron centre, and d2j is the Euclidean distance between the 
jth and (j+1)th neuron centre. 

According to Fig. 1, the control variable is a function of 
three variables: 

 

, , ,c i i i iv T VB VB⎡ ⎤= ∆ ∆⎢ ⎥⎣ ⎦ ,   (41) 

 
where iT∆  is the difference between machining time and 
time elapsed from the start of machining process (T). iVB∆  is 
the difference between the maximal referent flank wear pa-
rameter value and the actual, filtered one ( iVB ). This way, the 
RBF controller approximates the cutting speed, which can 
accomplish referent tool wear state from the actual one (within 
the remaining machining time), based on the average tool 
wear dynamics used for controller structuring. 

 
5.2 Learning algorithm 

The learning phase elements of weight vector c and matrix 
H need to be found. Weight parameters are determined by the 
recursive least squares algorithm [14]. It is an iterative method 
where the total number of iterations is equal to the number of 
learning samples (N). The weight vector belonging to the mth 
output neuron in the ith step is 

 
1

, , 1 1 1 , , 11T T
m i m i i i i i i m i i m i

−
− − − −⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦ ⎣ ⎦c c G d d G d O d c , (42) 

 
where d is the column vector of the D matrix (D = H T ) and 
the G matrix is defined as 

 
1

1 1 1 11T T
i i i i i i i i i

−
− − − −⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦G G G d d G d d G . (43) 

 
Initial conditions are set: cm,0= [0] and G0=α I, where α is an 
arbitrarily chosen large positive constant (α = 106 ) and I is the 
identity KxK matrix. 

In order to define matrix H elements, the number and posi-
tion of every hidden layer neuron centre (t) have to be estab-
lished first. The procedure is carried out separately for every 
combination of cutting parameters using the belonging set of 
flank wear parameters, which represents the average tool wear 
dynamics. It is based on the algorithm for flank wear parame-
ter samples that combine into groups. The group centres are 
then chosen as hidden layer neuron centres. For this purpose, 
the experimentally defined βA parameter is used as the maxi-
mum allowed distance between the group centre and the ele-
ment. 

{ }max , 1,...,  , 1,...,  ,

, , , ,

i g Ag

MM
ggi i i g

i N g G

VB T VB T

β− = = ≤

⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎢ ⎥⎣ ⎦

u u

u u
  (44) 

 
where ui is the ith samples vector, and gu is the mean value 
vector of the gth analysed group. Both parameters are normal-
ized within the interval [0, 1]. All samples fulfilling this condi-
tion participate in the calculation of the group centre, and the 
algorithm continues until all samples are grouped into belong-
ing groups. 

A higher βA parameter value influences the reduction of the 
number of hidden layer neurons. It reduces the oscillations of 
the control variable in the case of higher input vector varia-
tions. However, this reduction may have negative impacts on 
the quality of cutting speed approximation. Additionally, it is 
likely that the controller cannot accomplish its task in situa-
tions of highly intensive tool wearing. On the other hand, with 
smaller values of the βA parameter, these problems can be 
avoided. However, too small values lead to the higher aug-
mentation of hidden layer neurons, which can cause overfit-
ting (i.e., poor generalisation characteristics). Therefore, a set 
of cases is analysed with different tool referent states and cut-
ting parameters (Fig. 4). The results are evaluated and com-
pared using the productivity factor 

 

( )c,i i i 1
i 1

P = v -
I

T T −
=

∑ .  (45) 

 
At the end, βA = 0.05 (317 hidden layer neurons) is finally 
chosen. In this case, it is a well-balanced value between high 
productivity and satisfactory approximation capabilities. 

Controller parameters are adapted at the beginning of the 
control cycle for every new combination of machining pa-
rameters and tool referent state. Adaptation is also required in 
cases when cutting parameters and/or the maximal referent 
flank wear parameter value (VBMAX) is modified during the 
cutting process. If new and modified values of depth of cut 
and feed do not participate in the learning phase, the controller 
output has to be determined using linear approximation of the 
outputs obtained by different controller structures, which are 
defined for the closest values of these two cutting parameters 
to the actual one. 
 

6. Simulation results 

In the learning phase, 25 sets of filter and controller parame-
ters related to all combinations of chosen depth of cut (2, 2.5, 
3, 3.5, 4 mm) and feed (0.15, 0.2, 0.25, 0.3, 0.35 mm/rev) are 
established. The learning procedures for every set of parame-
ters are conducted on the base of 16 cutting speed values (100, 
110, 120 … 200, 220, 240 … 300 m/min). These network 
structures are then analysed using different sets of cutting 
parameters, final tool wear conditions, and estimation errors 
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within the same intervals but with different values than the 
one used in the learning process. 

The simulation step (i.e., period of generating a new control 
variable) is set to TS = 0.2 min. Generally, its value depends on 
the characteristics of the tool wear estimation module, tool 
wear dynamics, and the required quality of the control process. 
It must be small enough to provide a fast response to different 
types of disturbances and to ensure a referent tool state, espe-
cially in cases of very intense tool wear. On the other hand, it 
must be high enough to ensure quality tool wear estimation 
with reduced cutting speed variations and required on-line 
controller structure adaptation. 

From the set of obtained simulation results, several cases of 
TWR model response are chosen and presented hereafter. In 
the first two cases, the estimation errors are within the interval 
of ± 0.1 mm. The control model has accomplished the de-
sired tool wear state using a constant depth of cut and feed 
value (Figs. 5, 6). In contrast to the second case (Fig. 6), im-
pulse disturbance ( I

iδ = 1.3, i = 35) has been added to the tool 
wear model in the first example (Fig. 5). It is manifested as an 
additional growth in VB parameter for 0.037 mm in T=7 min. 
In both cases, it is obvious that the controller has successfully 

maintained a tool wear rate inside the set up bounds, with 
good response on impulse disturbance. Furthermore, the con-
trol model with MDNN filter achieves better results with re-
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Fig. 4. P-βA interrelation. 
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Fig. 5. TWR results for VBMAX = 0.4 mm and TM = 15 min. 
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Fig. 6. TWR results for VBMAX = 0.25 mm and TM = 25 min. 
 
 

0 20 40 60 80 100 120
0

0.1

0.2

0.3

T, min

V
B

, m
m

 

ap = 2 mm; f = 0.18 mm/rev

 

 
without est. error
without MDNN filter
with MDNN filter

0 20 40 60 80 100 120
0

100

200

300

T, min

v c, m
/m

in
 

 

 

 
Fig. 7. TWR results for VBMAX = 0.3 mm and TM = 120 min. 
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Fig. 8. TWR results for VBMAX = 0.35 mm and TM = 80 min. 
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duced oscillations of the control variable and a smaller control 
error. 

The influence of estimation errors is particularly noticeable 
in the next two cases presented in Figs. 7, 8. In these cases, the 
estimation errors are within the interval of ± 0.05 mm. In the 
first one (Fig. 7), the depth of cut and feed are also kept at a 
constant value, and impulse disturbance ( I

iδ = 1.2, i = 25) is 
added, which influences the growth in the VB parameter for 
0.019 mm in T=5 min. In the second case (Fig. 8), the depth of 
cut is linearly reduced from ap = 4 mm at the beginning of the 
cutting process to ap = 2 mm at the end. Although the interval 
of estimation error is smaller than in the first two examples, 
the control model without filtration does not manage to reach 
the desired referent tool states because of the mutual influence 
of too high cutting speed oscillations and tool wear process 
dynamics. 
 

7. Conclusions 

A new approach in designing the tool wear regulation 
model has been proposed. It is built upon two types of neural 
networks. The first one is tasked to filtrate the output signals 
of the tool wear estimator, thus providing the necessary pre-
conditions for the second one to generate an adequate control 
variable. Due to unavoidable and sometimes relatively high 
estimation errors, it has been shown that the implementation 
of the proposed filter is necessary to successfully reduce con-
trol variable oscillations and control error in achieving the 
maximum allowed tool wear intensity in the predefined ma-
chining time. The filter is structured using a recurrent type of 
neural network with good filtering capabilities because of 
every hidden layer neuron is built in the form of an IIR filter. 
The controller is configured in the form of a RBF neural net-
work because of its good approximation properties used in the 
calculation of cutting speeds, which could enable high ma-
chining process productivity. Both types of networks adjust 
their structures using fast learning algorithms, and they can be 
adapted to various forms of tool wear dynamics. Their learn-
ing procedures do not require additional sets of process data 
other than the one used for the purpose of tool wear estimator 
configuration. 
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Appendix : Optimal cutting speed for productivity 
maximisation in tool wear regulation 

Theoretically, the maximal MRR between two tool wear 
states that can be achieved within the predefined machining 
time (tool life) is characterised by one optimal cutting speed. 
This speed is always higher than the average value of any 
combinations of cutting speeds, which can ensure the required 
tool wear transition dynamics.  

In order to prove the aforementioned statement, Taylor's 
tool life equation is used: 

 
n

cv T C= .  (A.1) 
 

A combination of only two cutting speeds (vc1 > vc2) is also 
used: 

 

1 2 1 2

2 1 2 1

- - ,
- -

- - ,
- -

A B
c c cR c c

B A B A

A B
c c cR c c

B A B A

T T T Tv v v for v v
T T T T

T T T Tv v v for v v
T T T T

⎡ ⎤ ⎡ ⎤
+ < →⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

+ < →⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (A.2) 

 
where vcR , for now, is the referent cutting speed characteristic 
of the tool wear curve, which connects both tool wear states. 
At this point, it is irrelevant if the cutting speed is first higher 
(vc1 → vc2) or lower (vc2 → vc1) than the referent one (Figs. 
A.1-A.2).  

Every other combination of cutting speeds can be reduced 
to the combination of these two; hence, it can be concluded 
that if the inequalities in Eq. (A.2) are true, the referent cutting 
speed is actually the optimal one (i.e., it is higher than the 
average value of any arbitrary chosen combination of cutting 
speeds). 
 

A.1. Case 1 (vc1 → vc2) 

In the first case (Fig. A.1), it is supposed that the cutting 
speed is first higher (vc1) than the referent one (vcR), and then it 
decreases to vc2, hence achieving a new tool wear state (VBB, 
TB). The first inequality in Eq. (A.2) can thus be rewritten in 
the following form: 

 
( ) ( ) ( )1 2c A c B cR B Av T T v T T v T T− + − < − .   (A.3) 

 
Using the notation from Fig. A.1, it can be rewritten as 

 
( )

1 21 2 1 2c cc v c v cRv T v T v T T∆ + ∆ < ∆ + ∆ , i.e.  (A.4) 

1 2

1 2
1 2<

c c

c c
v v

cR cR

v vT T T T
v v

∆ + ∆ ∆ + ∆ .  (A.5) 

 
By equalising Taylor's expressions 

11 1c

n
c vv T C=  and 

1cR

n
cR vv T C= , it can be concluded that 
 

11 c cR

n n
c cRv vv T v T= .  (A.6) 

By equalising expressions 
1,1 2c A

n
c vv T C=  and 2

n
cR Av T C= , 

we obtain 
 

1,1 c A

n n
c cR Avv T v T= .  (A.7) 

 
If Eq. (A.7) is subtracted from Eq. (A.6), the relationship be-
tween cutting speeds vc1 and vcR can be obtained: 
 

11 1c

n n
c cRvv T v T∆ = ∆ .  (A.8) 

 
Using the same approach, it is possible to establish the rela-

tionship between vcR and vc2 where, from 
2,2 3c B

n
c vv T C=  and 

3
n

cR Bv T C= , we obtain  
 

2,2 c B

n n
c cR Bvv T v T= ,  (A.9) 

 
and from 

22 1c

n
c vv T C=  and 1cR

n
cR vv T C= , we derive 

 

22 c cR

n n
c cRv vv T v T= .  (A.10) 

 

 
 
Fig. A.1. Transition from state A to B in the case of vc1  vc2. 

 

 
 
Fig. A.2. Transition from state A to B in the case of vc2  vc1. 
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Finally, by subtracting Eq. (A.10) from (A.9) the relation be-
tween these two cutting speeds can be written in the form of 
 

22 2c

n n
c cRvv T v T∆ = ∆ .  (A.11) 

 
If Eq. (A.8) and (A.11) are written in the form of speed ratios, 
we have 
 

1 2

1 21 2,
c c

n n
c c

n n
cR cRv v

v T v T
v vT T

∆ ∆
= =
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  (A.12) 

 
and by incorporating Eq. (A.5), we derive 
 

1 2

1 2

1 2
1 2<

c c

c c

n n

v vn n
v v

T TT T T T
T T

∆ ∆
∆ + ∆ ∆ +∆

∆ ∆
, i.e.  (A.13) 

1 2

1 1
1 21 2 <

c c

n n n n
v vT T T T T T− −∆ ∆ + ∆ ∆ ∆ +∆ .  (A.14) 

 
Thereafter, if the relations 

 

1 1cvT T x∆ = ∆ −  and 
2 2cvT T x∆ = ∆ +   (A.15) 

 
Fig. A.1 are inserted in Eq. (A.14), it expands in the form of 
 

( ) ( )1 1
1 1 2 2 1 2<

n nn nT T x T T x T T
− −

∆ ∆ − + ∆ ∆ + ∆ + ∆ .  (A.16) 

 
By rearranging this equation in the form 
 

1 1

1 2 1 2
1 2

1 1 <
n n

x xT T T T
T T

− −
⎛ ⎞ ⎛ ⎞

∆ − + ∆ + ∆ + ∆⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠
,  (A.17) 

 
we can define the final inequality associated with the case 
where vc1 → vc2 

 
1 1

1 2
1 2

1 1 < 1 1
n n

x xT T
T T

− −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥∆ − − ∆ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∆ ∆⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
.  (A.18) 

 

A.2. Case 2 (vc2 → vc1) 

On the other hand, it is also possible that the tool is first cut-
ting with a slower speed (vc2) than the referent one, and then it 
increases, hence achieving a desirable tool wear state (VBB, 
TB). From the second inequality in Eq. (A.2), we derive 

 
( ) ( ) ( )1 2 <c B c A cR B Av T T v T T v T T− + − − .  (A.19) 

 
In other words, using the notation from Fig. A.2, the same 
relation in Eq. (A.5) can be obtained. If Taylor's equation is 
applied in this case, then 

 

1,1 c B

n n
c cR Bvv T v T= ,  (A.20) 

11 c cR

n n
c cRv vv T v T= ,  (A.21) 

22 c cR

n n
c cRv vv T v T= ,  (A.22) 

2,2 c A

n n
c cR Avv T v T= .  (A.23) 

 
By subtracting Eq. (A.21) from (A.20) and Eq. (A.23) from 

(A.22), we obtain 
 

11 2c

n n
c cRvv T v T∆ = ∆ , and  (A.24) 

22 1c

n n
c cRvv T v T∆ = ∆ ,  (A.25) 

 
respectively. 

If the last two equalities are also written in the form of 
speed ratios 

 

1 2

1 22 1,
c c

n n
c c

n n
cR cRv v

v T v T
v vT T

∆ ∆
= =

∆ ∆
  (A.26) 

 
and by incorporating Eq. (A.5), it expands in the form of 
 

1 2

1 2

2 1
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v vn n
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T TT T T T
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∆ ∆
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1 2

1 1
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c c

n n n n
v vT T T T T T− −∆ ∆ + ∆ ∆ ∆ +∆ .  (A.28) 

 
After the insertion of the relations 
 

2 1cvT T x∆ = ∆ +  and 
1 2cvT T x∆ = ∆ −   (A.29) 

 
Fig. A.2 in Eq. (A.28), we obtain the final inequality in the 
case when vc2 → vc1 
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A.3. Optimal cutting speed 

Eq. (A.18) can now be written in the form of 

 
1 1

1

2 1 2
1 1 1 < 1
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Using variables 2

1

Td
T

∆
=

∆
 and 1

1

xe
T

=
∆

, 1x T< ∆  together 
with constraints 
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Eq. (A.33) transforms into 
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1

1 1
1

1 1 1 1 <1
n

n ee
d d

−
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Likewise, it is possible to write Eq. (A.32) as 
 

1 1
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In this case, using 2
2

xe
T

=
∆

, 2x T< ∆ , and the same con-

straints as in Eq. (A.34), except the constraint 0 < e1 < 1 that is 
replaced by 0 < e2 < 1 , we derive 
 

( ) ( )1 1
2 2

1 1 1 1 <1n ne d e
d

− −⎡ ⎤+ − + −⎣ ⎦ .  (A.37) 

 
The inequalities in Eq. (A.2) are now transformed into ine-
qualities in Eq. (A.35) and Eq. (A.37), which are subject to 
constraints in Eq. (A.34) and 0 < e2 < 1. The proof that these 
two inequalities are valid is based on Bernoulli's inequality 
[15] where 

 
( )1 1ay ay+ < + ,  (A.38) 
 

provided that 0 1a< <  and 1 0y− < ≠ . Eq. (A.35) can be 
transformed into 
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0
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because 0 < (1-n) < 1, (0 < n < 1), and 11 0,e

d
− < ≠  (0 < e1 

<1, d > 0). With d > 0 the numerator must be 
 

( ) ( )1
1 11 1 1 0ne n e−− − + − < .  (A.41) 

 
If the numerator is written as 
 

( )1 11 1 0D n e− + − < ,  (A.42) 
 
where ( )11 11 nD e −= − , it turns out that in the case when 
 

( ) ( )1
1 1 11 1 1nD e n e−= − = − − ,  (A.43) 

 
 
 

the left side of Eq. (A.41) will be equal to zero. However, 
because from Eq. (A.38) 
 

( ) ( )1
1 1 11 1 1nD e n e−= − < − − ,  (A.44) 

 
it is clear that the inequality in Eq. (A.41), and consequently in 
Eq. (A.35), are valid. 

Likewise, Eq. (A.37) can be reformulated into 
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Given that d > 0, the numerator must be  
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2 21 1 1 <0ne d n e d−+ − − − .  (A.47) 

 
Using parameter – ( )1

2 21 nD e d −= + , it can be written as 
 

( )2 21 1 0D n e d− − − < .  (A.48) 
 
Given that 
 

( ) ( )1
2 2 21 1 1nD e d n e d−= + = + − ,  (A.49) 

 
the left side of Eq. (A.47) will also be equal to zero. Accord-
ing to Eq. (A.38), 
 

( ) ( )1
2 2 21 1 1nD e d n e d−= + < + − .  (A.50) 

 
Hence, it is obvious that the inequalities in Eq. (A.47), and 
consequently in Eq. (A.37), are true. By proving the validity 
of the inequalities in Eq. (A.35) and Eq. (A.37), the inequali-
ties in Eq. (A.2) are also finally proven to be valid, which 
means that the referent cutting speed (vcR) is the optimal speed 
in the productivity maximization criterion in the tool wear 
regulation process. 
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